线段树
线段树,又叫区间树,用于处理区间相关问题。
public interface Merger<E> {
/**
* 要做的操作
*
* @param a 参数1
* @param b 参数2
* @return 操作结果
*/
E merge(E a, E b);
}
public class SegmentTree<E> {
private E[] tree;
private E[] data;
private Merger<E> merger;
public SegmentTree(E[] arr, Merger<E> merger) {
this.merger = merger;
data = (E[]) new Object[arr.length];
for (int i = 0; i < arr.length; i++) {
data[i] = arr[i];
}
tree = (E[]) new Object[4 * arr.length];
buildSegmentTree(0, 0, arr.length - 1);
}
/**
* 在treeIndex的位置创建表示区间[l...r]的线段树
*
* @param treeIndex 当前线段树的根节点的索引
* @param l 当前线段树的左边界
* @param r 当前线段树的右边界
*/
private void buildSegmentTree(int treeIndex, int l, int r) {
if (l == r) {
tree[treeIndex] = data[l];
return;
}
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
int mid = l + (r - l) / 2;
buildSegmentTree(leftTreeIndex, l, mid);
buildSegmentTree(rightTreeIndex, mid + 1, r);
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
}
public int getSize() {
return data.length;
}
public E get(int index) {
if (index < 0 || index >= data.length) {
throw new IllegalArgumentException("Index is illegal.");
}
return data[index];
}
/**
* 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
*
* @param index
* @return
*/
private int leftChild(int index) {
return 2 * index + 1;
}
/**
* 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
*
* @param index
* @return
*/
private int rightChild(int index) {
return 2 * index + 2;
}
/**
* 返回区间[queryL, queryR]的值
*
* @param queryL
* @param queryR
* @return
*/
public E query(int queryL, int queryR) {
if (queryL < 0 || queryL >= data.length ||
queryR < 0 || queryR >= data.length || queryL > queryR) {
throw new IllegalArgumentException("Index is illegal.");
}
return query(0, 0, data.length - 1, queryL, queryR);
}
/**
* 在以treeIndex为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值
*
* @param treeIndex 线段树的根节点
* @param l 线段树的左边界
* @param r 线段树的右边界
* @param queryL 查询区间的左边界
* @param queryR 查询区间的右边界
* @return 结果
*/
private E query(int treeIndex, int l, int r, int queryL, int queryR) {
if (l == queryL && r == queryR) {
return tree[treeIndex];
}
int mid = l + (r - l) / 2;
// treeIndex的节点分为[l...mid]和[mid+1...r]两部分
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if (queryL >= mid + 1) {
return query(rightTreeIndex, mid + 1, r, queryL, queryR);
} else if (queryR <= mid) {
return query(leftTreeIndex, l, mid, queryL, queryR);
}
E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
return merger.merge(leftResult, rightResult);
}
/**
* 将index位置的值,更新为e
*
* @param index 索引位置
* @param e 值
*/
public void set(int index, E e) {
if (index < 0 || index >= data.length) {
throw new IllegalArgumentException("Index is illegal");
}
data[index] = e;
set(0, 0, data.length - 1, index, e);
}
/**
* 在以treeIndex为根的线段树中更新index的值为e
*
* @param treeIndex 线段树的根节点
* @param l 线段树的左边界
* @param r 线段树的右边界
* @param index 索引位置
* @param e 值
*/
private void set(int treeIndex, int l, int r, int index, E e) {
if (l == r) {
tree[treeIndex] = e;
return;
}
int mid = l + (r - l) / 2;
// treeIndex的节点分为[l...mid]和[mid+1...r]两部分
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if (index >= mid + 1) {
set(rightTreeIndex, mid + 1, r, index, e);
} else {
// index <= mid
set(leftTreeIndex, l, mid, index, e);
}
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
}
@Override
public String toString() {
StringBuilder res = new StringBuilder();
res.append('[');
for (int i = 0; i < tree.length; i++) {
if (tree[i] != null) {
res.append(tree[i]);
} else {
res.append("null");
}
if (i != tree.length - 1) {
res.append(", ");
}
}
res.append(']');
return res.toString();
}
}