平衡二叉树,是一种特殊的二叉查找树,也被称为AVL树。AVL是历史上第一棵自平衡二叉树,是高度平衡的二叉查找树,要求每个节点的左右子树高度差不超过1。
public class AVLTree<K extends Comparable<K>, V> {
private class Node {
public K key;
public V value;
public Node left, right;
public int height;
public Node(K key, V value) {
this.key = key;
this.value = value;
left = null;
right = null;
height = 1;
}
}
private Node root;
private int size;
public AVLTree() {
root = null;
size = 0;
}
public int getSize() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
private void inOrder(Node node, ArrayList<K> keys) {
if (node == null) {
return;
}
inOrder(node.left, keys);
keys.add(node.key);
inOrder(node.right, keys);
}
/**
* 判断该二叉树是否是一棵二分搜索树
*
* @return 该二叉树是否是一棵二分搜索树
*/
public boolean isBST() {
ArrayList<K> keys = new ArrayList<>();
inOrder(root, keys);
for (int i = 1; i < keys.size(); i++) {
if (keys.get(i - 1).compareTo(keys.get(i)) > 0) {
return false;
}
}
return true;
}
/**
* 判断该二叉树是否是一棵平衡二叉树
*
* @return 该二叉树是否是一棵平衡二叉树
*/
public boolean isBalanced() {
return isBalanced(root);
}
/**
* 判断以Node为根的二叉树是否是一棵平衡二叉树,递归算法
*
* @param node 根节点
* @return 以Node为根的二叉树是否是一棵平衡二叉树
*/
private boolean isBalanced(Node node) {
if (node == null) {
return true;
}
int balanceFactor = getBalanceFactor(node);
if (Math.abs(balanceFactor) > 1) {
return false;
}
return isBalanced(node.left) && isBalanced(node.right);
}
/**
* 获得节点node的高度
*
* @param node 节点
* @return 高度
*/
private int getHeight(Node node) {
if (node == null) {
return 0;
}
return node.height;
}
/**
* 获得节点node的平衡因子
*
* @param node 节点
* @return 平衡因子
*/
private int getBalanceFactor(Node node) {
if (node == null) {
return 0;
}
return getHeight(node.left) - getHeight(node.right);
}
// 对节点y进行向右旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// x T4 向右旋转 (y) z y
// / \ - - - - - - - -> / \ / \
// z T3 T1 T2 T3 T4
// / \
// T1 T2
private Node rightRotate(Node y) {
Node x = y.left;
Node T3 = x.right;
// 向右旋转过程
x.right = y;
y.left = T3;
// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
// 对节点y进行向左旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// T1 x 向左旋转 (y) y z
// / \ - - - - - - - -> / \ / \
// T2 z T1 T2 T3 T4
// / \
// T3 T4
private Node leftRotate(Node y) {
Node x = y.right;
Node T2 = x.left;
// 向左旋转过程
x.left = y;
y.right = T2;
// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
/**
* 向二分搜索树中添加新的元素(key, value)
*
* @param key
* @param value
*/
public void add(K key, V value) {
root = add(root, key, value);
}
// 向以node为根的二分搜索树中插入元素(key, value),递归算法
// 返回插入新节点后二分搜索树的根
private Node add(Node node, K key, V value) {
if (node == null) {
size++;
return new Node(key, value);
}
if (key.compareTo(node.key) < 0) {
node.left = add(node.left, key, value);
} else if (key.compareTo(node.key) > 0) {
node.right = add(node.right, key, value);
} else {
// key.compareTo(node.key) == 0
node.value = value;
}
// 更新height
node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
// 计算平衡因子
int balanceFactor = getBalanceFactor(node);
// 平衡维护
// LL
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) {
return rightRotate(node);
}
// RR
if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) {
return leftRotate(node);
}
// LR
if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
// RL
if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}
/**
* 返回以node为根节点的二分搜索树中,key所在的节点
*
* @param node 根节点
* @param key
* @return key所在节点
*/
private Node getNode(Node node, K key) {
if (node == null) {
return null;
}
if (key.equals(node.key)) {
return node;
} else if (key.compareTo(node.key) < 0) {
return getNode(node.left, key);
} else {
return getNode(node.right, key);
}
}
public boolean contains(K key) {
return getNode(root, key) != null;
}
public V get(K key) {
Node node = getNode(root, key);
return node == null ? null : node.value;
}
public void set(K key, V newValue) {
Node node = getNode(root, key);
if (node == null) {
throw new IllegalArgumentException(key + " doesn't exist!");
}
node.value = newValue;
}
/**
* 返回以node为根的二分搜索树的最小值所在的节点
*
* @param node 根节点
* @return 以node为根的二分搜索树的最小值所在的节点
*/
private Node minimum(Node node) {
if (node.left == null) {
return node;
}
return minimum(node.left);
}
/**
* 从二分搜索树中删除键为key的节点
*
* @param key
* @return 要删除节点的值
*/
public V remove(K key) {
Node node = getNode(root, key);
if (node != null) {
root = remove(root, key);
return node.value;
}
return null;
}
private Node remove(Node node, K key) {
if (node == null) {
return null;
}
Node retNode;
if (key.compareTo(node.key) < 0) {
node.left = remove(node.left, key);
retNode = node;
} else if (key.compareTo(node.key) > 0) {
node.right = remove(node.right, key);
retNode = node;
} else { // key.compareTo(node.key) == 0
// 待删除节点左子树为空的情况
if (node.left == null) {
Node rightNode = node.right;
node.right = null;
size--;
retNode = rightNode;
}
// 待删除节点右子树为空的情况
else if (node.right == null) {
Node leftNode = node.left;
node.left = null;
size--;
retNode = leftNode;
}
// 待删除节点左右子树均不为空的情况
else {
// 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
// 用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
successor.right = remove(node.right, successor.key);
successor.left = node.left;
node.left = node.right = null;
retNode = successor;
}
}
if (retNode == null) {
return null;
}
// 更新height
retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));
// 计算平衡因子
int balanceFactor = getBalanceFactor(retNode);
// 平衡维护
// LL
if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) {
return rightRotate(retNode);
}
// RR
if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) {
return leftRotate(retNode);
}
// LR
if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
retNode.left = leftRotate(retNode.left);
return rightRotate(retNode);
}
// RL
if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
retNode.right = rightRotate(retNode.right);
return leftRotate(retNode);
}
return retNode;
}
}